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t. There are 
urrently a number of streaming data analysissystems in resear
h or 
ommer
ial operation. These systems are gener-ally large-s
ale distributed systems, but ea
h system operates in isola-tion, under the 
ontrol of one administrative authority. We are develop-ing middleware that permits autonomous or semi-autonomous streaminganalysis systems (
alled \sites") to interoperate, providing them oppor-tunities for data a

ess, performan
e improvements, and reliability farex
eeding that available in a single system. Unique 
hara
teristi
s of oursystem in
lude an ar
hite
ture for the management of multiple 
oop-eration paradigms depending on the degree of trust and dependen
iesamong the parti
ipating sites; a multisite planner that 
onverts user-spe
i�ed de
larative queries into spe
i�
ations of distributed jobs; and ame
hanism for automati
 re
overy of site failures by redispat
hing failedpie
es of a distributed job. We evaluate our ar
hite
ture via experimentson a running prototype, and the results demonstrate the advantagesof multi-site 
ooperation: 
ollaborative jobs that share resour
es, evena
ross only a few sites, 
an produ
e results 50% faster than independentexe
ution, and jobs on failed sites 
an be re
overed within a few se
onds.Keywords: System S, streaming data analysis, Grid 
omputing, VirtualOrganizations, planning.1 Introdu
tionData stream pro
essing systems take 
ontinuous streams of input data, pro
essthat data in 
ertain ways, and produ
e ongoing results. There are 
urrently anumber of data stream pro
essing systems in resear
h [1{4℄ or 
ommer
ial [5℄operation. These systems are generally large-s
ale distributed systems, but ea
hsystem operates in isolation, under the 
ontrol of one administrative authority.Generally speaking, data that are brought into one su
h system are availableto any appli
ation running on the system, and similarly any data 
reated byone appli
ation are immediately available to other appli
ations. This sharingis 
ondu
ive to improving performan
e and s
alability through the synergy ofoverlapping queries within one system [4, 6℄. However, the s
ale and fun
tionalityof an individual system 
an still be limited when fa
ing extreme data rates (e.g.,telemetry from radio teles
opes [7℄) or 
omplex environments (e.g., supporting



2 M. Branson, et al.real-time disaster response). Additionally, resour
es (su
h as input data streams)that are available to one system are ina

essible to other systems.In this paper we des
ribe a middleware for Collaborating, AutonomousStream Pro
essing systems (CLASP). It sits above separate data stream pro-
essing systems and enables these systems to 
ooperate. We assume that ea
hsystem, whi
h we 
all a site in the larger 
ooperative environment, is at leastpartly autonomous. Thus the extent to whi
h di�erent sites 
ooperate is a matterof poli
y, determined by the administrators of ea
h of the sites involved.CLASP allows sites to bene�t in several respe
ts. They 
an share datasour
es that were owned and available individually. Thus a site 
an a

ess a mu
hwider spe
trum of data input, greatly in
reasing the breadth of its analysis. They
an share derived streams, whi
h are pro
essed results of existing appli
ations,thus avoiding dupli
ating pro
essing done by other sites and improving eÆ
ien
y.They 
an help ea
h other absorb any sudden in
rease in workload or de
reasein resour
es by rebalan
ing pro
essing a
ross sites. They 
an also improve thereliability of job exe
ution by re
overing jobs from failed sites.The middleware has been designed and prototyped in the 
ontext of Sys-tem S [8℄, a proje
t within IBM Resear
h to enable sophisti
ated stream pro
ess-ing using arbitrary appli
ation logi
 (rather than relational algebra operationssu
h as used in several other streaming analysis systems [1{3℄). Although somedetails like appli
ation interfa
es are spe
i�
 to System S, the ar
hite
ture itselfis generi
 enough for the interoperation of streaming systems of other kinds.We make several 
ontributions in this paper. We analyze what fun
tions areneeded for stream pro
essing sites to 
ollaborate and propose an ar
hite
turethat provides them. We extend the traditional Virtual Organization [9℄ (VO)
on
ept to allow sites to form di�erent VO stru
tures based on the degree ofmutual trust and 
oordination. We implement the ar
hite
ture on a representa-tive streaming system (System S) to demonstrate its feasibility and evaluate thebene�ts sites 
an gain through real testbeds and appli
ations.The rest of the paper is organized as follows. The next se
tion des
ribes Sys-tem S in greater detail. Poli
ies governing site intera
tion follow in Se
tion 3.The ar
hite
ture of CLASP is des
ribed in Se
tion 4. Se
tion 5 reports exper-imental results using a real testbed and appli
ation. The paper �nishes withrelated work and 
on
lusions.2 System SThe goal of System S is to extra
t important information from voluminousamounts of unstru
tured and mostly irrelevant data. Example appli
ations ofsu
h a system in
lude analyzing �nan
ial markets (predi
ting sto
k value by pro-
essing streams of real-world events) [5℄, dete
ting patterns of fraudulent insur-an
e 
laims, supporting responses to disasters su
h as Hurri
ane Katrina (basedon vehi
le movement, available supplies and re
overy operations), or pro
essingsensor data su
h as telemetry from radio teles
opes [7℄ or vol
ani
 a
tivity [10℄.



CLASP: Cooperating Data Stream Pro
essing 3We summarize the ar
hite
ture of System S as a representative of streamingsystems and des
ribe some of its key 
omponents:User Interfa
e (UI) Users pose inquiries to the system through a front end toanswer 
ertain high-level queries. For example, \Show me where all bottledwater is in the hurri
ane area." After the raw data have been pro
essedby appli
ation logi
 (e.g., �ltered, joined, and analyzed), results are passedba
k to the UI via data streams, where they 
an be presented to the userfor further exploitation.Inquiry Servi
e (INQ) a

epts spe
i�
ations of the desired �nal results in aformat 
alled Inquiry Spe
i�
ation Language (ISL), whi
h depi
ts the se-manti
 meaning of the �nal results and spe
i�es user preferen
es su
h aswhi
h data sour
es to in
lude or ex
lude [11℄. Given an inquiry, a Plannersub
omponent [12℄ automati
ally 
omposes data sour
es and pro
essing inthe form of jobs to produ
e desired results. It then submits su
h jobs to theJob Management 
omponent for exe
ution.Job Management (JMN) A job in System S is a set of inter
onne
ted Pro-
essing Elements (PEs), whi
h pro
ess in
oming stream obje
ts to produ
eoutgoing stream obje
ts that are routed to the appropriate PE or storage.The PEs 
an perform stateless transformation or mu
h more 
ompli
atedstateful pro
essing. System S reuses PEs among di�erent appli
ations whenpossible to avoid redundant pro
essing.Stream Pro
essing Core (SPC) manages the exe
ution of PEs [13, 8℄. Itsupports the transport of streams 
onsisting of Stream Data Obje
ts be-tween PEs and into persistent storage. It also provides adaptive 
onne
tivityand �ne-grained s
heduling of 
ommuni
ating appli
ations.With the ex
eption of INQ, these 
omponents map reasonably 
losely to otherdata stream analysis systems and are used here as a representative example. INQis, by 
omparison, unique to System S: other systems do not have su
h automati
appli
ation 
omposition 
apability and jobs are usually hand-
rafted.Ea
h System S site runs an instan
e of ea
h of these system 
omponents,possibly as a distributed and fault-tolerant servi
e [14℄. Ea
h site may belong toand be managed by a distin
t organization; administrators who manage one sitegenerally have no 
ontrol over another site. Collaboration among multiple sitesis thus similar to Grid Computing [9℄: sites share resour
es but retain substantiallo
al autonomy.As with the Grid, sites that want to 
ollaborate for 
ommon goals and bene-�ts 
an negotiate and form Virtual Organizations (VOs) [9℄. However, there ex-ist unique requirements in the streaming 
ontext, in
luding the need for higherdegrees of s
alability and various administrative relationships among sites. Se
-tion 3 des
ribes how we address these issues.3 Virtual Organizations and Common Interest Poli
iesSites that want to 
ollaborate 
an form VOs. The members of a VO formalizetheir permissible interoperations as a Common Interest Poli
y (CIP), whi
h
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i�es how they may share various types of resour
es and pro
essing. VOs 
anbe either Federated or Cooperative.A Federated VO has an appointed leader site that assumes a 
oordination roleand is able to exert a level of 
ontrol over the other sites. This VO is appropriatewhen the sites share a 
ommon set of goal(s) that they want to a
hieve, or areall subje
t to a 
ommon authority. It allows the VO Lead to optimize resour
eand pro
essing usage for the 
ommon good of the VO.In a Cooperative VO, there is no 
entral point of authority. VO membersintera
t as peers of ea
h other; they are independent and may have separateagendas. They may interoperate out of altruism, giving a

ess to some resour
esfreely, or they may 
harge a 
ost for a

ess (
ost 
ould be monetary or 
reditsin some sort of virtual e
onomy).VOs may have di�erent relationships with ea
h other. A whole VO 
an be in-
luded hierar
hi
ally as a member of another larger VO [15, 16℄. This allows sitesto s
ale up for wide s
ope of 
ollaboration. Two or more VOs may have 
ommonmembers whi
h belong to these VOs simultaneously. The kinds of resour
es the
ommon members share within ea
h of these overlapping VOs, however, 
an be
ompletely di�erent. The exa
t resour
e sharing within the VO is spe
i�ed byits CIP terms.3.1 CIP Terms and AgreementsA CIP 
ontains terms that di
tate resour
e sharing, su
h as:{ Whi
h set of data streams and lo
ally stored data 
an be shared by whi
hother remote sites. The set 
an be de�ned based on attributes su
h as thedata type or data rate.{ Whi
h set of pro
essing resour
es 
an be used to run jobs from whi
h othersites; whi
h kinds of PEs 
oming from whi
h other sites will the lo
al siteexe
ute.{ In times of failure, whi
h sites will perform what fun
tion (e.g., monitor,ba
kup data, re
over jobs) of the failure re
overy pro
ess.The CIP is known by all the members in a VO. By spe
ifying these terms,VO members advertise resour
es that others may request to use. However, itdoes not guarantee a

ess, sin
e multiple members may request a resour
e that
an only be used ex
lusively. Therefore, a VO member must reserve a resour
ein advan
e by establishing an agreement with the providing member to se
urea

ess to the resour
e for some duration.Besides de�ning the kinds of resour
e sharing that are possible in a VO, theCIP also spe
i�es what parameters are asso
iated with an agreement (su
h asquality of servi
e levels, 
osts, and limitations on the resour
e usage). On
e es-tablished, this agreement must then be referen
ed when a

essing this resour
e.The agreement's terms and 
onditions, along with 
osts and penalties, will be
ontinuously monitored by some auditing fun
tions at both System S sites pro-viding and 
onsuming the resour
e.



CLASP: Cooperating Data Stream Pro
essing 5

(a) CLASP ar
hite
ture (b) Multiple 
ollaborating sitesFig. 1: CLASP ar
hite
ture in
ludes several 
omponents. They provide the fun
tionsneeded for sites to 
ollaborate.This notion of agreement shares similarities with the WS-Agreement spe
i-�
ation from the Grid 
ommunity [17℄. For System S, a portion of a CIP termserves as the analogy to the WS-Agreement Agreement Fa
tory and provides the
reation template that is needed for 
reating an agreement between the providerand 
onsumer of the resour
e. More details are presented in Se
tion 4.2.4 Ar
hite
ture4.1 OverviewFigure 1(a) shows the detailed CLASP ar
hite
ture on one site. UI, JMN andSPC are single-site 
omponents and CLASP is between the UI and JMN. Multi-ple sites 
an work together through the intera
tion of their CLASP middleware(illustrated in Figure 1(b)). CLASP has a number of 
omponents providing var-ious fun
tions to support 
ollaboration.VO Manager deals with the 
onstru
tion of VOs and de
isions on permissible
ross-site resour
e usage; Se
tion 4.2 provides details.VO Planner produ
es plans utilizing resour
es from within the VO and parti-tions a global plan into a distributed job 
ontaining multiple subjobs. It isdes
ribed further in Se
tion 4.3.Resour
e Awareness Engine (RAE) provides information about availableresour
es to the VO Planner; see Se
tion 4.4.Remote Exe
ution Coordinator (REC) extends JMN to the multi-site 
aseby deploying distributed jobs submitted by the VO Planner. Ea
h subjob ina distributed job may run on a di�erent site (elaborated upon in Se
tion 4.5).



6 M. Branson, et al.Tunneling Manager (TM) manages tunnels that transmit streams from PEson one site to PEs on another site (details in Se
tion 4.5).VO Failover Management (FM) handles site monitoring, arrangement of ba
kupsites, and re
overy of jobs after site failures. Failover is dis
ussed elsewhere [18℄and summarized in Se
tion 4.6.VO Heterogeneity Management (HM) is intended to manage the mappingor translation of data types, database s
hemas, se
urity and priva
y labels,and similar features between sites; see Se
tion 4.7 for a brief dis
ussion.4.2 VO ManagementThe CLASP prototype supports the formation and management of VOs by usingtext-based CIP de�nition �les. Ea
h VO has a 
orresponding CIP �le, 
ontainingthree types of terms: VO type, membership, and sharing. Every CIP �le mustindi
ate whether the VO is federated or 
ooperative. For every member of theVO, there must be a membership term, spe
ifying either a site member or a VOmember. The CIP �le may 
ontain numerous sharing terms. Ea
h sharing termde�nes what resour
es 
an be shared between whi
h two sites, with attributesand their values, agreement 
reation parameters (separated by semi
olons). Be-low is an example sharing term:2;2;siteA;siteB;MONITOR SITE FOR FAILURE;SHOULD;COST:10:INITIATION COST:100;SITE TO MONITOR:MANDATORY:MIN MONITORING FREQ:OPTIONAL:ACTION UPON FAILURE:MANDATORYThis term has a type (2, resour
e sharing), an index (2) of this term among thoseof the same type, identi�ers of the sites involved (provider is siteA and 
onsumeris siteB), what resour
e is being shared (site monitoring 
apability), a

ess advi
e(SHOULD), attributes su
h as 
ost and initiation 
ost (10, 100), and whatparameters are available when the term is used as an template to 
reate anagreement, in
luding whi
h parameters are mandatory (e.g. a
tion upon failure)or optional (e.g minimum monitoring frequen
y). We are 
urrently moving toXML, whi
h will provide a more stru
tured framework for this spe
i�
ation.We expe
t human administrators to negotiate and install CIP terms on theirsites. To 
reate a VO, one site's VO management 
omponent parses the CIP�le and 
onta
ts other sites' VO management 
omponents about the 
reationof the new VO. When there are hierar
hi
al VO members, all des
endants ofVO members are noti�ed re
ursively about the new VO. On
e a VO is in pla
e,
omponents 
an establish agreements a

ording to the CIP terms. A 
omponent(su
h as the Failover Manager) does this by �rst querying its lo
al VO Manage-ment for the set of 
andidate CIP terms that are appli
able to its requirements.For example, if it needs to �nd possible providers in a VO to monitor aparti
ular site, it submits a query spe
ifying this 
apability. VO Managementwill then sear
h and return the mat
hing CIP terms within the spe
i�ed VO.The FM 
omponent will then analyze the terms and 
onditions of the returned
andidate CIP terms and sele
t the \best" one, e.g. a site that 
an monitor at a
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essing 7small 
ost. After �lling in the 
reation parameters su
h as monitoring frequen
y,it 
alls lo
al VO Management, whi
h will in turn 
onta
t the VOManagement onthe provider site to establish the agreement. That VO Management 
omponentmust 
onta
t the providing 
omponent and gain its 
ommitment to support theagreement. On
e established, the agreement will be referen
ed when making theinter-site request. The agreement is terminated after its lifetime, or expli
itly bythe requester.4.3 VO PlannerThe VO Planner is unique to System S. It automati
ally produ
es plans thatutilize data sour
es and PEs from all sites in the VO. It a

epts inquiries thatdes
ribe the semanti
s of desired �nal results in Inquiry Spe
i�
ation Language(ISL) [11℄. The Planner reads in the semanti
 des
ription of data sour
es andthe required input and output streams of PEs, and uses a bran
h and boundsear
h algorithm [12℄ to �nd plans that 
an produ
e the �nal results.Given one inquiry, the Planner produ
es multiple distributed plans in theform of 
ow graphs, 
onsisting of inter
onne
ted PEs and data sour
es. Theseplans have di�erent performan
e/
ost tradeo�s and 
an be presented to the user,who 
an de
ide whi
h one to deploy. The planner then partitions the sele
ted planinto multiple sub-plans, ea
h of whi
h is a subjob assigned to one member site forexe
ution. The planner also inserts tunneling PEs into subjobs; ea
h pair of sinkand sour
e tunneling PEs transport one stream a
ross sites. Finally, a distributedjob that 
ontains multiple subjobs, ea
h of whi
h 
ontains a normal job (fordata pro
essing) and multiple tunneling PE jobs (for data transportation), isprodu
ed and submitted for exe
ution.Plan 
omposition within the VO Planner is implemented using a plan solvermodule that operates on an abstra
t formulation expressed in Stream Pro
essingPlanning Language (SPPL) [12℄. SPPL is designed to enable eÆ
ient planningin stream pro
essing by introdu
ing language primitives that natively modelstreams. The semanti
s of data sour
es and PEs are represented using OWLontology [19℄ �les. Sin
e the semanti
 des
riptions are relatively stati
, these�les do not 
hange frequently. When a site joins a VO, it 
an 
opy these �lesover to the VO Planner's site.4.4 Resour
e Awareness EngineResour
e awareness refers to the propagation of information about data sour
es,PEs, and other kinds of resour
es among multiple 
ollaborating sites. Sites needsu
h remote resour
e information for operations su
h as planning, failure re
ov-ery. Su
h information may be stored in relational or semanti
 data stores, sharedmemory, or text �les. The 
omponent that fa
ilitates information propagationamong sites is the Resour
e Awareness Engine (RAE).We intend to use ROADS [20℄, a resour
e dis
overy servi
e, as the basisfor this 
omponent. ROADS allows multiple sites to query and sear
h for re-sour
e information from others. The RAE 
omponents on these sites will form
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hy, whose exa
t topology depends on the trust and administrativerelationships among sites. Ea
h site's RAE will publish its resour
e informationin a highly 
ondensed summary format. The summaries from 
hild sites willbe aggregated by a site's RAE and propagated further up the tree. Thus ea
hRAE will have the aggregated summary about the resour
e information of all itsdes
endants, and the root RAE obtains the summary of all resour
e information.When a site needs to query resour
e information, it sends a query to theroot RAE. The root will evaluate the query against the summaries of its 
hildbran
hes, and �nd out whi
h bran
hes have the required resour
e information.It will forward the query down these bran
hes. Ea
h RAE in the hierar
hy willfollow the same pro
ess. Finally the RAEs possessing mat
hing resour
e infor-mation will return it to the requesting site. The details about how summariesare produ
ed and queries are evaluated against them 
an be found in [20℄.For the prototype des
ribed in this paper, the RAE is integrated dire
tlywith the VO Planner. That is, the Planner is given a 
on�guration �le withthe des
ription of data sour
es in ea
h site in its VO. Then as it generates newdistributed jobs, the Planner augments its view of available derived streams toin
lude the newly 
reated streams on ea
h site, whi
h it 
an reuse when needed.4.5 Distributed Exe
utionThe Remote Exe
ution Coordinator (REC) is responsible for the exe
ution ofdistributed jobs. The VO planner submits a distributed job to the REC of theowner site, whi
h is the one from whi
h the inquiry was re
eived. This REC will
oordinate the exe
ution of the subjobs, in
luding their re
overy upon failures.The REC dispat
hes the subjobs to the RECs on the 
orresponding exe
utionsites, as spe
i�ed by the planner. An example is illustrated in Figure 2. Site 3 isthe owner site and its REC exe
utes the third subjob and dispat
hes two othersubjobs to Sites 1 and 2 for exe
ution. The REC at the owner site maintains asubjob table about whi
h subjobs are running at whi
h other site. The table isused for re
overy of subjobs on failed sites.The REC exe
uting a subjob �rst parses its Job Des
ription Language (JDL)to identify one normal job, and multiple tunneling PE jobs. One thread islaun
hed to handle ea
h of them. The thread 
ustomizes the JDL, su
h as as-signing a host for ea
h PE. Then it deploys the job through its lo
al Job Man-agement. For a sour
e PE job, the REC needs to 
onta
t the lo
al TunnelingManager responsible for assigning the network address and port on whi
h thesour
e PE will be listening for in
oming 
onne
tions. It deploys the sour
e PEjob and reports the assigned network lo
ation to the REC at the owner site.For a sink PE job, the REC needs to query the REC of the owner site for thenetwork lo
ation of the 
orresponding sour
e PE. Then it 
on�gures and deploysthe sink PE job.
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Fig. 2: Exe
ution of a distributed job 
onsisting 3 subjobs. Owner Site 3 exe
utes onesubjob, and dispat
hes two subjobs to Site 1 and 2 for exe
ution. Site 4 monitors Sites1 and 2.4.6 Failure Re
overyFailover in CLASP has been des
ribed elsewhere [18℄, with emphasis on theproblem of identifying whi
h sites are most appropriate for failure re
overy ina large-s
ale VO with many available alternatives. Here we des
ribe the imple-mentation for dete
ting and handling failures.The FM at the owner site arranges the failover monitoring for sites exe
utingsubjobs. By querying CIP terms, it �nds whi
h sites 
an monitor the livenessof exe
ution sites, using periodi
 heartbeat messages. When an exe
ution sitefails, the FM at a monitoring site dete
ts the failure and noti�es the ownersite. The REC at the owner site examines the subjob table and �nds out whi
hsubjobs were running on the failed site. It then dispat
hes these subjobs to anew exe
ution site, sele
ted from 
andidate sites returned from VOManagement.Algorithms by Rong, et al. [18℄ 
an be used for the sele
tion. The new exe
utionsite will deploy the subjob.Although exe
uting normal jobs is straightforward, re-establishing brokentunnels needs spe
ial attention. To re
over tunnel sink jobs, the REC at the newexe
ution site queries the network lo
ation for 
orresponding tunnel sour
e jobs,then 
on�gures and exe
utes the tunnel sink job. The re
overy of tunnel sour
ejobs is a bit 
omplex, as the old tunnel sink job might still be sending data tothe failed site. The REC deploys su
h jobs and noti�es the owner site aboutthe new network lo
ation. The FM at the owner site will inform other exe
utionsites to terminate tunnel sink jobs that send streams to the failed site. Thesetunnel sink jobs will be restarted using the new network lo
ations of re
overedtunnel sour
e jobs. During the above pro
ess, new agreements might be 
reatedfor additional monitoring and exe
ution.We also envision re
overing 
riti
al appli
ations from failed sites, even whenthey run entirely within the site that fails. This will require advan
e registration



10 M. Branson, et al.of the jobs to resubmit, with an agreement with another site to monitor the sitemaking the request and to restart the 
riti
al appli
ations if needed.4.7 HeterogeneityOur 
urrent prototype assumes a homogeneous environment. In the more general
ase, ea
h site may have di�eren
es in its operating environment. This hetero-geneity 
an arise in the runtime environment, type system, se
urity and priva
ypoli
ies, user namespa
e, and other aspe
ts.The general approa
h to heterogeneity is through mapping fun
tions and
ommon base agreements. The CIPs that govern how sites interoperate mustspe
ify operations to perform to ensure 
onsisten
y. Di�eren
es in data types willbe handled through expli
it 
onversion fun
tions: for example, 
onverting a nine-digit US ZIP 
ode into a �ve-digit one would involve trun
ating the additionallevel of detail. For se
urity, System S assumes latti
e-based [21℄ se
re
y andintegrity poli
y models [22℄. Ea
h site will understand the format and impliedrelationships of se
urity labels used by all sites; the a

ess rights and restri
tionsen
oded within a se
urity label are uniformly appli
able throughout all the sites.We will address operation in heterogeneous environments in the future.5 Experimentation5.1 Test EnvironmentWe have implemented the CLASP ar
hite
ture in Java (with the ex
eption ofthe tunneling PEs, written in C++). The prototype 
urrently has about 40,000lines of 
ode. We use a testbed that 
onsists of Linux SUSE 9 ma
hines. Ea
hma
hine has 2 Xeon 3.06 GHz CPUs, 800MHz, 512KB L2 
a
he, 4G memory and80G Hard drive. They are 
onne
ted through a 1Gbps LAN. Multiple ma
hines
an be grouped together as a System S site, whi
h CLASP runs above. Formost experiments, we use a Federated VO that 
ontains four sites, one of whi
his a ba
kup site, while the others are exe
ution sites.The goal of experiments is two-fold. 1) Quantify the bene�ts 
ollaboratingsites 
an gain 
ompared to operating individually. We use the total number ofprodu
ed results as the main metri
. 2) Ben
hmark the time overhead of basi
operations of CLASP, su
h as planning, job submission, and failure re
overy.This gives us a basi
 understanding of the eÆ
ien
y of the system.To evaluate our system, we use an appli
ation we entitle \Enterprise GlobalServi
e" (EGS). EGS is intended for enterprises to monitor the quality of servi
eof their 
ustomer servi
e personnel. Customers talk with servi
e representativesthrough a 
orporate VoIP network. A business analyst 
an issue various inquiriesto examine the status of employee servi
es. These inquiries in
lude: �nd thelo
ation and \
ourtesy level" of a parti
ular employee, �nd the satisfa
tion levelof a parti
ular 
ustomer, et
. We use a VoIP traÆ
 generator [23℄ to produ
ethe VoIP streams between employees and 
ustomers. Ea
h inquiry's job 
ontainsabout 15 PEs and a job produ
es results 
ontinuously during its lifetime.
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Fig. 3: Two distributed jobs are de-ployed within a VO of 4 sites. Ea
h jobhas 3 subjobs that run on Sites 1, 2 and3. Tunnel PEs 
onne
t subjobs a
rosssites. Fig. 4: After Site 2 fails, the two sub-jobs running on Site 2 are re
overed onSite 4. Tunnel PEs are re
onne
ted sothat the two distributed jobs 
ontinueprodu
ing results.Figure 3 shows an example of two distributed jobs deployed in the VO. Ea
hof the two jobs (lo
ation of SHIMEI, lo
ation of EMILY) has three subjobs,running on Sites 1, 2 and 3. Roughly speaking, these jobs work as follows: Asour
e PE pulls in all streams from the traÆ
 generator. An annotator PEextra
ts Real Time Proto
ol �elds and turns them into SDO attributes, then avalue-based �lter PE removes ba
kground noise. A speaker dete
tion PE dete
tsthe identities of persons; lo
ation/
ourtesy/satisfa
tion analyzing PEs produ
ethe lo
ation, 
ourtesy or satisfa
tion of persons. Their results are joined andthen �ltered based on whi
h person the inquiry is looking for. The �nal resultsare reported and shown in a GUI.Among all the PEs, lo
ation/
ourtesy/satisfa
tion analyzing PEs are themost 
omputing-intensive. Beyond the mimimum pro
essing required to performthe required tasks, the amount of extra pro
essing they perform on ea
h in
omingSDO, de�ned as the load level, 
an be tuned. In the experiments we vary theload level for them to evaluate the system behavior under di�erent 
omputationintensities; zero load level 
orresponds to normal pro
essing.Figure 4 shows what happens after Site 2 fails. Site 4 dete
ts the failure andnoti�es the owning site, Site 3, whi
h re
overs the failed subjobs on Site 4. Thetunnel PEs are re
on�gured su
h that 
ross-site data streams re
onne
t to thesame subjobs re
overed at the new site.5.2 Result Produ
tionWe measure the performan
e of our prototype in several respe
ts. We �rst 
om-pare the number of results obtained by 
ollaborating sites in a VO, or using sitesindividually, under the same inquiry load. We produ
e three sets of inquiry load.Within ea
h set, there are 6 inquiries submitted to ea
h of the three exe
utionsites in a VO. An individual site uses its own data sour
es and resour
es to pro-du
e plans and run the jobs. The sharing of streams is 
on�ned within ea
h site.When the same 18 inquiries are submitted to the VO, the VO planner produ
esjobs that 
an reuse remote derived streams a
ross sites.



12 M. Branson, et al.Set Site 1 Site 2 Site 3Set 1 lo
 SHIMEI lo
 SHIMEI lo
 SHIMEImaximum lo
 FAYE lo
 FAYE lo
 FAYEreuse 
or SHIMEI 
or SHIMEI 
or SHIMEI
or FAYE 
or FAYE 
or FAYEsat SHIMEI sat SHIMEI sat SHIMEIsat FAYE sat FAYE sat FAYESet 2 lo
 SHIMEI 
or LEONARD sat SHIMEIminimum lo
 FAYE 
or NORMAN sat LEONARDreuse lo
 ENRIQUE 
or MARK sat MARKlo
 NAOMI 
or FAYE sat EMILYlo
 LEONARD 
or ENRIQUE sat NAOMIlo
 EMILY 
or SHIMEI sat FAYESet 3 lo
 ENRIQUE 
or FAYE sat FAYEaverage sat EMILY sat NORMAN 
or MARKreuse 
or NAOMI sat FAYE sat LEONARDsat NORMAN 
or EMILY sat NORMANlo
 MARCIA 
or NORMAN lo
 SHIMEIsat SHIMEI lo
 MARCIA 
or LEONARDTable 1: The 3 sets of inquiries used in the experiments. lo
 refers to getting thelo
ation of an employee; 
or obtains their 
ourtesy; and sat 
omputes 
ustomer satis-fa
tion.Due to the sharing of more 
ommon pro
essing, jobs running in a VO willgenerally produ
e results more eÆ
iently. The more 
ommon pro
essing a
rosssites, the higher the savings by sharing existing pro
essing. The three sets ofinquiries 
orrespond to di�erent degrees of sharing (shown in Table 1). In the�rst set, the 6 inquiries (2 lo
ation, 2 
ourtesy, 2 satisfa
tion) submitted to ea
hsite are the same. When a new instan
e of the same inquiry is submitted, onlyadditional tunneling and result reporting PEs are needed. They 
orrespond tothe maximum degree of 
ross-site sharing.In the se
ond 
ase, ea
h site has a distin
t set: Site 1 has only lo
ationinquiries, Site 2 only 
ourtesy inquiries, and Site 3 only satisfa
tion inquiries.This 
orresponds the minimum degree of sharing. Inquiries of di�erent sites 
anshare only a few PEs su
h as the sour
e PE and ba
kground noise redu
tionPE. They have to do the most 
omputing-intensive pro
essing (�nding lo
a-tion/
ourtesy/satisfa
tion) by themselves. The third set is a middle ground be-tween the two. Ea
h site has a random mixture of inquiries, in
luding di�erenttypes and person names. The degree of sharing is less than the �rst but greaterthan the se
ond set. This is likely what would happen in reality. For ea
h set, wevary the 
omputation intensity of jobs by 
hanging the load level. We let jobsrun for 2 minutes, and average the results over �ve runs.Figure 5 
ompares the total number of results of all the 18 jobs in set 1 whenrunning in the VO or individually. They produ
e about the same amount whenthe load level is zero. As the load level in
reases, running in the VO 
an produ
eas mu
h as 50% more results, be
ause jobs 
an tap into the pro
essed results



CLASP: Cooperating Data Stream Pro
essing 13

Fig. 5: The total number of results pro-du
ed by the 18 jobs in set 1, runningat individual sites or within the VO. Fig. 6: The total number of results ofall the 18 jobs for Set 2, running at in-dividual sites or within the VO.a
ross sites and avoid dupli
ating 
ommon pro
essing. For those running at anindividual site, however, they 
an only tap into pro
essing within the same site.We also examined the number of results produ
ed by ea
h individual job, whenrunning in a VO or one site. The phenomena is similar and we do not elaboratedue to spa
e limitations.Figure 6 
ompares the number of results for set 2. Jobs running in a VO pro-du
e slightly fewer results than in set 1. The reason is that the 
ost paid for shar-ing o�sets the bene�ts. In set 2, ea
h site has only one type of job (lo
ation, 
our-tesy or satisfa
tion). Jobs at di�erent sites do not share 
omputation-intensivepro
essing. Thus running in a VO does not redu
e the amount of pro
essingmu
h.On the other hand, there is a 
ost to pay for a VO. Extra tunneling PEs areone fa
tor. Another is a syn
hronization e�e
t. A PE 
onsuming SDOs slowlymay 
ause its produ
ing PE to wait sin
e reliable transport is used to send SDOsbetween PEs. Other 
onsuming PEs re
eiving SDOs from the same produ
ingPE will have to wait as well. Thus one job that runs more slowly a�e
ts otherjobs when they share input streams. Set 2 is the worst 
ase where little pro
essing
an be shared a
ross sites, thus the savings are not enough to 
over the 
ost.Figure 7 shows the 
omparison for set 3. The result is quite similar to that ofset 1: running in a VO produ
es more results. This similarity is be
ause ea
h sitehas a random sequen
e of jobs that 
ontains all di�erent types and person names.The 
ommon pro
essing a
ross di�erent sites is signi�
ant. The VO allows jobsto reuse the pro
essing a
ross site, thus produ
ing results more eÆ
iently.5.3 FailoverSites in a VO 
an ba
kup and re
over jobs for ea
h other when some of them fail.Figure 8 shows the details about one VO job's result sequen
e number 
hangefor failover. Around time 402.5s a site fails, then after another 13s the failureis dete
ted. (The dete
tion time depends on the heartbeat interval, whi
h 
an
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Fig. 7: The total number of results forall the 18 jobs for Set 3, running in VOor individual sites. Fig. 8: The job sequen
e number as afun
tion of time. On
e dete
ted, failedjobs are re
overed in about 3.5s.
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(b) Load level 80000.Fig. 9: The aggregate result sequen
e number for jobs running in a VO and on Site 4with varying load levels.be set to a
hieve the desired dete
tion speed.) In about 3.5s the failed jobs arere
overed. Sin
e the job needs some time to rebuild the lost state, it resumesprodu
ing results 10s later.We use the number of results produ
ed to demonstrate the advantage offailover. We run three types of jobs on Sites 1-3 in a VO. Site 4 is monitoringSites 1-3. Upon the failure of any of them, Site 4 will re
over subjobs runningon the failed site. Site 4 also runs three types of jobs on itself. We let all jobsrun for one minute, then we kill Site 1. After jobs are re
overed on Site 4, we letthem run for another two minutes.Figure 9(a) shows the aggregate sequen
e number as a fun
tion of time, forall VO jobs and all Site 4 jobs, when the load level is zero. At any time, theaggregate sequen
e number for a 
olle
tion of jobs is de�ned as the total numberof results produ
ed by these jobs up to that time. Starting around time 7240s, alljobs are produ
ing results. At around 7300s, Site 1 fails. The aggregate sequen
enumber for VO jobs stays 
at, while for Site 4 jobs it is still in
reasing. After Site
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ts Site 1's failure and re
overs its subjobs (around 7350s), the VO jobsstart to produ
e results. Sin
e the load level is low, there is suÆ
ient pro
essing
apa
ity on Site 4 to a

ommodate the failed subjobs without a�e
ting those ofits own. The speed of sequen
e number in
rease for Site 4 after failover remainsabout the same as before.Figure 9(b) shows the same 
omparison under load level 80000. The sequen
enumbers in
rease more slowly. Eventually Site 4's and VO jobs produ
e about1100/450 results, less than the 1400/650 results when the load level is 0. Al-though jobs for both Site 4 and VO produ
e less results, it is still mu
h betterthan without failover (the VO jobs would not produ
e any more results).Another interesting observation is that Site 4's jobs produ
e results morequi
kly between 7800-7850s. This is due to the la
k of any syn
hronization e�e
tduring re
overy. Sin
e all jobs re
eive input streams from the same data sour
e,more jobs will slow down the produ
ing rate of the data sour
e. When VO jobshave failed but not re
overed, only Site 4's jobs are 
onsuming data.5.4 PlannerPlan Solver Performan
e We measure the time it takes the VO planner to�nd plans that produ
e the desired �nal results. The Stream Pro
essing PlanningLanguage (SPPL) solver we use to implement the VO planner has been evaluatedwithin one single site. It is s
alable with large numbers of PEs, sour
e and plansizes [12℄. The VO planner adds tunneling PEs to plans and optimizes plansfor distributed metri
s su
h as minimizing 
ross-site bandwidth 
onsumption,
al
ulated using bandwidth 
onsumption for PEs and sour
es that produ
e 
ross-site streams.We run the VO planner on a 3GHz Intel Pentium 4 PC with 4 GB memory.We use a setting that in
ludes 5 sites. Data sour
es are uniformly randomlyassigned to a site and ea
h data sour
e is available at that site only. PEs areavailable on all sites. This is reasonable be
ause PE 
ode 
an be easily transferedand installed at other sites (assuming they are se
ure and trusted). PEs andsour
es are given randomly 
onstru
ted des
riptions of their inputs and outputs,and random output bandwidth.Sin
e there 
ould be many PEs that are not relevant to an inquiry, thepro
essing graphs are likely to be of relatively small sizes. However, the plannerstill takes time to sear
h through plans in
luding irrelevant PEs. To model thiss
enario, we vary the number of PEs per site from about 72 to 1500, most ofwhi
h are not relevant to the spe
i�ed goal. To ensure plans that produ
e a given�nal result do exist, we generate random global pro
essing graphs �rst and usetheir �nal results as input to the planner. There exist only 2 
andidate plans of6 nodes ea
h (ex
luding tunneling PEs) for the goal. We average the results over10 runs.The planning time as a fun
tion of the number of PEs per site is presentedin Table 2. We 
an see that it takes the planner less than one se
ond to �nd theoptimal plan for sites having up to about 160 PEs. Even in the 
ase of 1500 PEs,



16 M. Branson, et al.Number of Time to OptimalPEs per site Plan (s)72 0.37102 0.36162 0.51312 1.46612 2.201512 8.39Table 2: Planning times for optimal6-PE plans, as a fun
tion of the numberof PEs per site.
Number of PEs Time to �rst plan (s)5 0.1710 0.59203420 0.75300540 0.68017950 1.01968100 0.966948Table 3: Planning times for the �rstplan, as a fun
tion of the total numberof PEs in the plan.it is only a little bit over 8s. Sin
e many streaming jobs are expe
ted to run fora long time, spending a few se
onds to �nd an optimized one is reasonable.We further evaluate the time to the �rst plan as a fun
tion of the plan size,i.e., the number of PEs in the plan (see Table 3). In all 
ases the planner 
an�nd a reasonably good plan within about a se
ond. In general, the larger theplan size, the greater the time it takes. However, this time is not 
ompletelymonotoni
 with the size of the plan, be
ause the sear
h time depends on thestru
ture of individual plans as well.Sin
e proving optimality is a more diÆ
ult problem, it takes long time tode
ide whether a dis
overed plan is optimal. However, empiri
al results show thatplans found initially are 
lose to optimal ones. In 10 randomly generated planningproblems that require 6 PEs and sour
es in the plan, the solver 
onsidered onaverage 104 
andidate plans. The �rst plan is found between the �rst 7.3% and25% of the plan sear
h time. This plan is within 1.2% of the optimal one, usinga quality measure that 
ombines an additive PE and sour
e quality metri
 andinter-site bandwidth 
onsumption.Hen
e, when the sear
h takes longer than several se
onds, we terminate thesear
h early and present the 
urrent plan for deployment assuming that it is
lose to the optimal. We leave further improvement on the s
alability of theSPPL solver to future work.Agreements-Driven Replanning A prerequisite to su

essfully deploy a dis-tributed job is that all agreements are established. To avoid in
urring possible
osts before job deployment, the planner does not establish agreements at plan-ning time. Instead, agreements are established when the job is being deployed.If not all of the required agreements 
an be established, one must replan.We have measured the time that replanning takes in the EGS appli
ation bydistributing the job to 3 sites and 
on�guring the sites to reje
t initial agree-ments. The planner then replans the jobs with higher priority (and possiblyhigher site-dependent exe
ution budget). Replanning was performed 3 times be-fore deployment, resulting in higher job priorities and di�erent plan partitioning.The whole 
y
le requires less than 7s. Although in this 
ase replanning happens
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Fig. 10: The dispat
hing time detailsof a distributed job, from submissionto �nally it is deployed and ready torun. Fig. 11: The detailed breakdown ofea
h subjob. Subjob 1 has two tunnelsink jobs, subjob 2 has one sink andone sour
e, subjob 3 two sour
es.
ompletely automati
ally, the VO planner provides APIs for developing moresophisti
ated GUIs to allow human feedba
k when replanning is needed.5.5 Job Deployment TimeTo understand the responsiveness of the system, we also measure the time ittakes to deploy a distributed job. This is from the submission of the JDL of adistributed job, to the dispat
hing of its subjobs to other sites, until �nally allsubjobs are up and ready to pro
ess data. We use the same JDLs as before andthey ea
h 
ontain about 20 PEs (in
luding tunneling PEs).Figure 10 shows the detailed time breakdown for a distributed job, with threesubjobs, ea
h of whi
h has two tunnel jobs and one normal job. For ea
h subjob,a separate thread is laun
hed to dispat
h it to the 
orresponding site. Thus theoverall time is dominated by the longest subjob. After a site re
eives a subjob,it pro
esses the JDL �rst, then it laun
hes one thread for ea
h of the jobs: thenormal job and the two tunnel jobs. The time for a subjob is in turn dominatedby the job taking the longest time. From Figure 10, subjob 1 takes the most time,about 600ms. The other two subjobs take about 500ms and 400ms, respe
tively.Within ea
h subjob, one tunnel job takes the longest time. The whole distributedjob takes about 700ms.Figure 11 shows the �ner breakdown for ea
h normal job and tunnel job.We �nd that the tunnel sink query takes the longest time. The reason is that,although a tunnel sink job 
an be deployed almost simultaneously as its tunnelsour
e end, it has to query and wait for the tunnel sour
e to register the listen-ing IP address and port. Thus a tunnel sink is always deployed later than itssour
e end. We plan to explore a \gateway" approa
h where multiple 
ross sitestreams 
an be multiplexed between a pair of gateway PEs to further improvethe performan
e.



18 M. Branson, et al.6 Related WorkCLASP has a strong relationship, yet signi�
ant di�eren
es, with two generalareas of 
omputing: Grid 
omputing [9℄ and streaming data analysis [3, 2, 1℄.With respe
t to Grid 
omputing, a re
ent arti
le [24℄ highlights the similari-ties between 
ooperative stream pro
essing and Grid 
omputing. They des
ribesimilar environments: \distributed, multidis
iplinary, 
ollaborative teams" thatatta
k problems in a distributed fashion due to the nature of their various \in-telle
tual, 
omputational, data, and other resour
es." Indeed, our system adoptssome Grid 
onstru
ts, su
h as VOs. In addition, there has been substantial workin mat
hmaking between di�erent organizations based on required 
apabilities(e.g., Liu, et al. [25℄ and the re
ent work on WS-Agreements [26, 17℄).At the same time, there are a number of important di�eren
es. Our ar
hi-te
ture supports multiple 
ooperation paradigms, in
luding Federated and Co-operative (peer-to-peer) VOs. It allows sites to 
ollaborate more 
losely, withhierar
hi
al layers of VOs to provide arbitrary s
alability. This is suitable for
omplex stream pro
essing that 
annot be easily broken into smaller and similarpie
es and requires 
omplementary 
ontributions from all sites. The distributedplanning 
omponent of System S is signi�
antly more sophisti
ated and 
exiblethan the Grid models.Borealis [3℄ is a distributed stream pro
essing analysis system with a numberof similarities to System S. It has expli
it support for fault toleran
e [27℄ as wellas 
ontra
ts to \sell" load between sites in a federated system [28℄. CLASP,using System S, di�ers fundamentally from Borealis and other stream pro
essingsystems su
h as STREAM [1℄ and TelegraphCQ [2℄ in a number of aspe
ts.First, although ea
h su
h system itself 
an be distributed, there is no supportfor streaming systems belonging to di�erent administrative authorities to worktogether. They 
annot bene�t from the sharing of data streams and pro
essingto improve eÆ
ien
y, reliability, or the breadth, depth and s
ale of analysis.Se
ond, System S supports generi
 appli
ation-spe
i�
 pro
essing rather thandatabase operations| a more diÆ
ult problem due to higher 
omplexity, devel-opment 
osts and times to 
ompletion [29℄. System S has an Inquiry Spe
i�
ationLanguage that allows users to spe
ify appli
ation de
laratively at semanti
 level.This is very important to allow users fo
us on appli
ation level tasks, rather thandeal with the 
omplexity of �nding the optimum set and inter
onne
tion of datasour
es and PEs.7 Con
lusions and Future WorkIn this paper we have demonstrated that CLASP, our middleware for 
oop-erating data stream pro
essing sites, enables su
h sites to in
rease the s
ale,breadth, depth, and reliability of analysis beyond that available within a sin-gle site. Experiments with our prototype have demonstrated the performan
ebene�ts gained from reusing pro
essing from other sites, as well as quantifying
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urred in the system. There also exist other more quali-tative bene�ts, su
h as a

ess to remote data sour
es to broaden the breadth ofanalysis.One of the important aspe
ts we will investigate in the future is what me
h-anisms are needed to support se
urity and trust. The 
urrent system works in abenign environment. When sites do not have full trust for ea
h other, or someof them are sel�sh or even mali
ious, se
urity 
he
ks should be enfor
ed. In ad-dition, as the system evolves, we will in
orporate features su
h as fully dynami
resour
e awareness and support for heterogeneity.We also plan to investigate the s
alability of the system. Our testbed was asmall number of sites, whi
h is probably 
onsistent with typi
al interoperatingagreements one might expe
t from a system of this sort: in a real system, ea
hsite would itself be a very large-s
ale distributed system. Beyond that, we are
urrently experimenting with issues regarding large, multilateral agreements,parti
ularly in 
ompetitive e
onomi
 environments in whi
h sites do not provideresour
es simply out of altruism.A
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